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Abstract

In this paper we propose a theoretical model where profit maximising firms bargain with local unions on wages.
Relative bargaining power depends on aggregate labour market conditions. Investment decisions can be profit
constrained: in such a case a wage increase can reduce investment whenever it lowers the cash flow for the firm.
However, given different propensities to consumption of workers and capitalists, a shift in favour of wages in income
distribution may compensate profit reduction (due to cost increase) through a demand increase. After studying the
dynamic properties of a system of two non-linear differential equations, we use reasonable parameter values (taken
from empirical works on the Italian economy) to corroborate our analytical findings.
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1. Introduction

The pioneering work of R. Goodwin on "A growth cycle" originally published in 1965 [see Goodwin

1969] gives an explanation of the business cycle in terms of an interaction between income

distribution and accumulation activity. It has been followed by a massive research trying to extend

the original model in  several directions: price formation, role of effective demand, labour/capital

substitutability, to quote the most relevant ones.

The original model owes a good part of its success to its clear-cut assumptions. Goodwin follows the

Cambridge tradition in assuming a constant capital/output ratio: thus when the capital/output ratio

does not increase (i.e. the marginal productivity of capital remain constant), the rate of profit does

not vary during an expansionary phase unless the profit share changes. Since productivity growth is

exogenously given, real wage changes (due to unemployment changes) drive the cycle.

However, when one tries to take this model to the data, several assumptions do not find empirical

support. While there is a sufficiently wide consensus about the unemployment effect on the level of

the real wage (the so-called real wage curve), the evidence on the correlation between the rate of

change of real wages and unemployment is rather weak1. In addition, while in the theoretical model

effective demand does not play any role (since one additional unit of demand translates one-to-one in

additional units of capital), in the actual world we observe a variable capital/output ratio2. In facts, if

adjusting the capital stock requires time an increase of demand does not translate immediately into

new equipment, but rather into an increase in the degree of capacity utilisation.

In this paper we propose a small macro-model that is inspired to Goodwinian ideas, but that

accounts for a real wage curve (obtained as bargaining outcome) and cyclical variation of capacity

utilisation (due to adjustment costs of the capital stock). The main similarity to Goodwin's original

model is that we introduce a profit constraint on investment, due to some sort of credit rationing. In

this way the Goodwinian feed-back can still operate: an increase in investment raises the existing

capital stock and the associated labour productivity; as a consequence, workers' unions raise their

wage claims. But this lowers firm's profitability and its investment activity. In this way we retain the

possibility of distributional cycles. However, when capacity utilisation can vary and demand

formation is taken into account, profit reduction cannot be taken for granted. A wage-share increase

may accelerate consumption (due to workers' higher propensity to consume): this pushes demand

and capacity utilisation up. If demand and utilisation in turn affect investment, this may delay the

upper turning point of the cycle. Or it can even induce a cycle of the accelerator-multiplier type: an

expansion (reduction) in demand, leading to over- (under-) utilisation of capacity, is self-reinforced

by an increase (decrease) in investment, up to the point where investment is constrained (stimulated)

by the existing distribution of income. Then a slowing down (an acceleration) of investment causes a

turn in the business-cycle phase. In this way our model allows also for the possibility of demand
                                                       
1 Empirical evidence on the effects of unemployment on the level of real wage can be found in Blanchflower-Oswald
1994 and Layard-Nickell-Jackman 1991. Empirical validation of a Phillips curve for Italian real wages can be found
in Fabiani and oths. 1997.
2 See the data on 8 OECD countries reported in Flaschel-Groth 1995.
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cycles in the Harrod-Kalecky tradition, based on the interplay of investment and aggregate demand

(for a given distribution of the value added).

Our model is studied analytically to uncover its dynamical properties. The main results are: (a) the

economy can have a multiplicity of stationary equilibria (with a higher o lower level of activity); (b)

these equilibria can be either stable or unstable depending on parameter values; (c) there can exist

attracting closed orbits (that is, limit cycles) around the equilibria; (d) more than one attractor

(equilibria and orbits) can be simultaneously stable, so that the economy can be trapped in different

asymptotic regimes depending on initial conditions; (e) permanent oscillations are caused either by

the interplay between capacity and output, as originally proposed by Harrod (1939) and Kalecky

(1971), or by a Goodwin (1969) mechanism where income distribution is crucial. The model is also

simulated using parameter values estimated in a previous work: it turns out that the analytical result

can be confirmed for reasonable values of the parameters.

The paper is organised as follows. In section 2 we present the theoretical model; in sections 3 and 4

some formal propositions regarding its dynamical properties are presented. Section 5 includes some

simulations of the model under plausible (with reference to the Italian case) values of the parameters.

Section 6 concludes.

2. The theoretical model

We assume the existence of two groups of agents, employees and employers. Only the latter are

endowed with initial capital, and therefore are entitled to earn profits from production. Let us call

them workers and capitalists. There is a finite number of agents in each group. Each capitalist runs a

firm, and the workers in each firm are represented by a firm union. In each firm the local union

bargains over the (real) wage with the corresponding capitalist. At the aggregate level, the resulting

wage does not ensure full employment of the existing labour force. We assume a small open

economy, and therefore capitalists are price takers in the commodity (and labour) market. The

commodity price is normalised to unity, so that all variables are expressed in real terms.

There exist adjustment costs for capacity: production does not adjust immediately to existing

demand, and therefore there is a cumulation/decumulation of inventories. This aspect is not explicitly

modelled here, but it implies obviously a disequilibrium motion for output. A credit rationing

mechanism is assumed: therefore, desired investment encounters an upper limit created by the

availability of funds to the firm3.

In addition to investment, the demand side is defined as follows: workers and capitalists exhibit a

consumption function that is exponential in their income, and workers' income elasticity of

consumption is higher than capitalists': therefore income distribution between wages and profits

                                                       
3 In Kiyotaki-Moore 1995 the budget constraint of each investing agent equates (optimal) consumption, investment and debt
repayment with cash flow and new loans. Taking individual consumption proportional to individual labour income and keeping a
constant financial position creates a positive relationship between (actual) investment and current profits, as argued in the text.
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affects the aggregate propensity to consumption4. The exogenous components of demand are

represented by public expenditure and the net trade balance.

The objective function of each capitalist is given by

(1) max exp( ) ( ) ( ) , , , ( )
,L I

t

Rs Y W T L I ds− ⋅ − + − ′ > ′′ > =
∞z 1 0 0 0 0ψ ψ ψ ψ

under the following constraints

(2) Y L K= +σ σ σχ
1

(3) &K I K= − δ

(4) I Y W T L≤ = − + ′ >ν ν νΠb g b g( ) ,1 0

where Y = firm production, L = firm employment, I =  gross investment decision, K = installed

capacity, R is capitalists' inter-temporal discount rate, W = wage rate at the firm level, T = tax

wedge, W(1+T) = total labour cost, ψ = adjustment cost for the firm, χ = output-capital scale factor, 

δ = depreciation rate, Π = gross profits of the firm, ν a concave increasing function. We assume σ
<1, so that r = 1/(s-1), the elasticity of substitution between capital and labour, is negative.

Equation (1) indicates the inter-temporal maximisation of profit under adjustment costs for the

capital stock. Equation (2) describes a CES technology under constant returns to scale. Inequality

(4) describes the existence of liquidity constraints for the investor: in addition to greater availability

of funds, existing profitability constitutes a signal to the market of the potential solvability of the

capitalist, and therefore more credit is offered whenever profits are high.

The optimal demand for labour that solves problem (1) is given by

(5) L Y W T* ( )= ⋅ +1
ρ

or denoting logs of variables with small letters

(6) l y w= + +ρ τ( )

where τ = log(1+T)5. The first order condition with respect to investment is derived from the

Hamiltonian associated to problem (1). Let the adjustment cost function ψ take the following

exponential form: ψ
ϕ

ϕ

( )I
I

=
+

+1

1
, with φ>0, so that our hypotheses on its derivative are satisfied. Then

the optimal investment decision satisfies

(7) I Rs Rs= − = ⋅ = ⋅( $ $ ) , $ exp( ), $ exp( )/λ µ λ λ µ µϕ1

                                                       
4 This assumption is common in most of the post-keynesian tradition, often invoking some sort of liquidity constrain. Analogous
result can be replicated in a neo-classical model of growth with constant productivity of capital: see Bertola 1993 and 1994.
5 When writing down the Lagrangian that incorporates the Hamiltonian and a Kuhn-Tucker multiplier associated to inequality (4)
and deriving with respect to L, we are implicitly assuming that exp( )− ≠ ′Rs µν , which is generic.
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where λ is the current-value costate variable and µ is a current-value Kuhn-Tucker multiplier

associated with inequality (4). The dynamic paths of λ and µ determine the optimal path of

investment according to the associated first order conditions

(8)
& ( )

,

λ δ λ
∂
∂

µν

µ ν µ

= + − + ′

− = ≥

R
S|
T|

R
Y

K

I

1

0 0

b g
b gc hΠ

Without (perfect) information about the future paths of all the variables and without explicit

modelling of the credit market it is impossible to derive analytical time functions for λ and ν (and

consequently for µ). However something can still be said under specific assumptions. If static

expectations are introduced, condition (7) can be rewritten as

(9) I
R

Y

K R

Y

K

Y W T L

=
+

⋅FHG
I
KJ ⋅ + ′ −

L

N
MMM

O

Q
PPP

= +
⋅ FHG

I
KJ
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MMM
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Q
PPP

≥

− + ≤
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S
||
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||

−
−

χ
δ

µν µ
χ

δ

ν

ρ
ϕ ρ

ϕ1
1 1

1

1

1

( )

( ( ) )

for 

for 

Π Π

Π Π

where  satisfies =Π Π ν
χ

δ
νρ

ϕ
−

−
−

+
⋅FHG

I
KJ

L

N
MMM

O

Q
PPP

F

H

GGGG

I

K

JJJJ
=1

1
1

1

R

Y

K
I I$ , $e j  being the unconstrained level of investment.

In other words, when the level of profitability is sufficiently high, investment is driven by the ratio

between marginal productivity and replacement costs, as in the neo-classical version of the Tobin's q-

theory; otherwise, labour costs can reduce current investment because they lower available funds. If

we assume concavity for the ν function (i.e. the tightness of the constraint declines more than

proportionately as profitability increases), a reasonable relationship between profits and investment

(for any given level of unconstrained investment) can be represented as in figure 1.

[figure 1 about here]

A way to formalise this type of relationship is to postulate first a concave functional form for the ν
function for Π Π≤ 6. Thus, for given $I , we assume

(10) ν ν
ω

ω ωΠ Π
Π

Πb g e j= = F
HG

I
KJ ⋅ = ⋅ −; $

$
$ $I

I
I I 1    ,   0 1< <ω , Π Π≤

Notice that ν $, $ $I I Ie j = , so that Π = $I . Now, expression (9) is a continuous, piece-wise differentiable

function. In order to smooth the kink which takes place at Π Π= = $I , we introduce a differentiable

weight ζ that is almost zero for Π Π>  and almost unity for Π Π< . The full investment function can

thus be approximated by means of a geometric mean of constrained and unconstrained investment:

(11) I I I I I I
I

= ⋅ = ⋅ ⋅ = ⋅FHG
I
KJ

− − −ν
ζ ζ ω ω ζ ζ

ωζ
Π Π

Π
, $ $ $ $ $

$
e j 1 1 1

We define the following ζ function7

                                                       
6 For an alternative formulation see Appendix 1 of Checchi-Rampa (1996).
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(12) ζ
υ

υ
= ⋅ +

−

+

L
N
MM

O
Q
PP = ⋅ + F

HG
I
KJ

F
HG

I
KJ

⋅

⋅

1

2
1

1

1

1

2
1

e

e
f

I

I

I

log( / $)

log( / $) $

Π

Π

Π

Since f ⋅ ∈ −b g b g1 1, , it follows that ζ ∈ 0 1,b g; f, and thus ζ, is a reverted logistic function, which takes on

its high value for Π Π<  and its low value for Π Π> . The higher is υ, the quicker is the transition.

The investment function represented by equation (11) is a weighed (geometric) average of a purely

neo-classical investment function with adjustment cost for capital and a classical function (where in

the extreme case ζ=ω=1 investment equals profits). The switch of regime occurs around Π : below

this threshold, income distribution affects accumulation; above it the driving force is represented by

the diminishing marginal productivity of capital.

When we take logarithms of equation (11), taking (9) and (12) into account, we get

(13) log log , * log logI i y k
R

I y k
R

b g b g b g b g b g≡ = ⋅ − − +
+

F
HG

I
KJ

L
NM

O
QP + ⋅ ⋅ − ⋅ − − +

+
F
HG

I
KJ

L
NM

O
QP

RS|T|
UV|W|

1 1 1 1

ϕ ρ
χ

δ
ω ζ

ϕ ρ
χ

δ
Π Π

     = ⋅ − − +
+

F
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I
KJ

L
NM

O
QP + ⋅ ⋅ + − − ⋅ − − +

+
F
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I
KJ

L
NM

O
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RS|T|
UV|W|

1 1
1

1 1

ϕ ρ
χ

δ
ω ζ θ

ϕ ρ
χ

δ
y k

R
y y k

R
b g b g b glog log log

where we have used the definition Π = −Y 1 θb g , θ being the wage share8.

Let us notice that actual investment is a positive function of current production (both because it

raises marginal productivity of existing capital and it raises available funds) and a negative function

of installed capacity (it lowers actual productivity) and of user cost of capital (it increases

replacement costs). Labour costs have an ambiguous sign: whenever the elasticity of substitution is

smaller than one in absolute value, an increase in the wage rate lowers actual investment. Vice versa

in the alternative case9.

Now, definition (3) can be approximated by expanding in Taylor's series around log(I/K) = log(δ)

(the value of gross investment that keeps the capital stock constant) as follows

(14)
& exp log exp log exp log log log( ) log log

log( )

k
I

K

I

K

I

K
o

I

K

i k

= − = F
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L
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QP − = + ⋅ F
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F
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I
KJ + F
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F
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I
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δ δ δ δ δ δ δ

δ δ

b g b g b g

to obtain the dynamic equation of the capital stock

(15) & log log log log( )k y k y y k
R R

= − ⋅ +
−

⋅ + ⋅ + − − ⋅ − − +
+

F
HG

I
KJ

L
NM

O
QP

RS|T|
UV|W|

+ ⋅
+

F
HG

I
KJ − ⋅

δ
ϕρ

δ ϕρ
ϕρ

δωζ θ
ϕ ρ

χ
δ

δ
ϕ

χ
δ

δ δ
1

1
1 1b g b g b g

                                                                                                                                                                                       

7 Alternative formulations were available (for example ζ
υ

= +
F
H
GG

I
K
JJ

FH IK1 1 e I
log $

Π
); the present one was chosen for easiness of

computation of its derivative. In fact observe that 
d

d I

df

d I
f

ζ υ

Π Π/ $ / $e j e j= ⋅ = − ⋅ −
1

2 4
1 2 .

8 It is easy to see that, given (5), θ
ρ

= +
+

W T1
1b gc h .

9 Under a Cobb-Douglas technology the investment would be of course independent of the wage rate.
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Moving to the wage determination, we assume that within each firm the capitalist and the local union

bargain over the wage rate. Once the bargain has ended successfully, the capitalist hires the workers

unilaterally (according to equation 5). The threat point for the union is the alternative wage outside

the firm, while for the capitalist is the zero production/zero profits situation. In symbols the optimal

wage solves the following program

(16) max( ) ( )
W

W V− β Π

where V U W UBe= − +( )1 η η  = alternative wage, U = unemployment rate, B = unemployment benefit,

We = wage expected outside the firm, β = bargaining power of the union; η is a positive parameter

such that ηU can be interpreted as the probability of not finding a new job having been fired (thus

one might expect that η is close to unity). When replacing the definitions of V and Π into equation

(16) and considering that in equilibrium We = W (absence of leap-frogging), one gets

(17) W
U

U
B

U

Y

L T
=

+
+

+
⋅

+
η

β η
β

β η ( )1

Equation (17) shows that in equilibrium the wage rate will be a weighted average of unemployment

benefit and labour productivity. Given the fact that the latter surely exceeds the former, an increase

in bargaining power for the union raises the optimal wage. As a consequence, the share of wages in

income, θ, will be positively correlated with union power and unemployment benefit, and negatively

correlated with unemployment rate and productivity. Assume, with little loss of generality for

subsequent analysis, that the unemployment benefit is equal to zero. Considering the definition of

U
L

LF

Y W T

LF
= − = −

+
1 1

1( ) ρ

, where LF indicates the total labour force, and applying the implicit

function theorem, we get

(18) θ
β

β η
θ β θ θ θβ=

+
= > > <

U
y LF y LF( , , ) , , ,0 0 0

The wage share defined in (18) fluctuates between 1 (full employment) and β
β η+

 (absence of

production). If we want to use an explicit version of the previous function, and want to take into

account the fact that we do not observe extreme values in the real world, we can restrict its
fluctuations in some interval θ θ, . Recalling (5) and assuming an exponential relation between

output and bargained wage, we may posit:

(19) θ
β

β η η
β

θ

θ θ
η
β

θ

θ θ
η
β

γγ
=

+
=

+ ⋅ −F
HG

I
KJ

=≈ +

−
+ ⋅

= +

−
+ ⋅ − ⋅−U LF L

LF
LF Y lf y

1

1

1
1

1
1e j exp

The particular shape of equation (19) is depicted in figure 2. It shows that the wage share remains at

boundary values for almost all the output range, and has its highest rate of increase (i.e., the

derivative d dyθ /  is at its maximum) at y lf= / γ .

[figure 2 about here]
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It is now time to move to the production side. As we have already anticipated, production does not

adjust immediately to effective demand because of the adjustment costs in capacity, and therefore

inventories play a buffer role. The easiest way to model this assumption is to posit

(20) & log( )y Y yd= −αe j

where Yd = effective demand. The effective demand is a weighed (geometric) average of three

components: private investment, domestic consumption and exogenous demand X (including external

trade balance and public expenditure).

(21) Y I C Xd = − −ε ξ ε ξ1

Domestic consumption is simply (log)proportional to available income. Given the existence of the

two groups of agents with different propensities to consumption (respectively cw  and ck ), the

average propensity to consume depends on the functional distribution of income.

(22) C Y Yc c cw k= = + −( ( ) )θ θ1

Replacing equations (21) and (22) into (20) yields

(23) & ( )y i c c c y x yk w k= ⋅ + ⋅ + ⋅ − ⋅ + − − ⋅ −α ε ξ θ ε ξb gc h 1

Using all previous definitions we are led to a system of two non-linear first-order differential

equations of the first order (where ζ and θ are defined according to equations (12) and (19)

respectively)

(24)   & log log ( )y c c c y k
R

xk w k=
− − +

+ + ⋅ − −
L
N
MM

O
Q
PP ⋅ +

−L
NM

O
QP
⋅ + ⋅ − +

−L
NM

O
QP

⋅
+

F
HG

I
KJ + − − ⋅α

ε ωζ ϕρ

ϕρ
ξ θ α

ε ωζ

ϕρ
αεωζ θ α

ε ωζ

ϕ
χ

δ
α ε ξ

1 1
1

1
1

1
1

b gc h b gc h b g b g b g

(25)   & log log log( )k y k
R

= −
− +

⋅ +
− −

⋅ + ⋅ − +
−

⋅
+

F
HG

I
KJ − ⋅

δ ωζ ϕρ

ϕρ
δ ϕρ ωζ

ϕρ
δωζ θ

δ ωζ
ϕ

χ
δ

δ δ
1 1 1

1
1b gc h b g b g b g

.

3. Steady states and their stability

The non-linear dynamics of our model is driven by two switching functions: the profit constraint on

the investment decision (equation 11) and the distribution of income under wage bargaining

(equation 19). This implies that any expansion produces two contrasting effects: on one side the

output expansion leads to an increase in consumption expenditure (reinforced by higher wage claims

of workers); on the other side the investment growth is constrained by the reduction in profitability

(due to greater capital stock and/or higher wage costs). However when the wage share has reached

its maximum value, consumption increases at the same rate as output does, while investment starts

decelerating: this explain the turning point of recession. Similarly occurs for the turning point of

recovery.

The reason of the cyclical behaviour can be as follows. When capital is low (with respect to the locus
&k = 0  of its stationarity) investment demand drives production upwards; consumption is then
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stimulated, sustaining this motion. But investment is furtherly stimulated, since the marginal

productivity of capital (roughly measured by the output-capital ratio) is increasing; in addition, also

profits are increasing, so that possible liquidity constraints disappear initially: it follows that capital

starts increasing more rapidly than output. At a certain point investment demand starts decelerating,

due to this growth of the capital/output ratio: so output stops its growth and eventually crosses

(vertically) its stationarity locus (its speed becomes negative) while investment is still positive: this

means that the output-capital ratio starts decreasing, and the inducement to invest is weakened.

Furthermore, when output is high a possible change in income distribution might turn the liquidity

constraint on: the slow-down of investment becomes thus important and the growth of capital

decreases until it becomes negative. It follows that (although consumption might still be high)

aggregate demand is falling, driving output downwards. The economy undergoes a recession, during

which the sequence of phenomena is reversed with respect to our previous description, until the

lower turning point is reached.

The qualitative phase diagram of system (24)-(25) is depicted in figure 3.

[figure 3 about here]

We now want to be more precise about the analytics of our dynamical system. Since its behaviour

depends on a large set of parameters, we restrict our discussion to a subset of it. To this end, we

introduce the following mild assumptions

Assumptions (A): (A1) 0 1> > −ρ

(A2) 0 1< <ϕ

(A3) δ
θ

δ
χ1

1
−

<
+

<
R , which of course implies δ

θ
δ

χ1−
<

+ R .

As regards assumption A1, we know (see note 8) that it is necessary if one wants the wage share to

be increasing in the wage rate and hence, as stated in (18), increasing in output (decreasing in the

unemployment rate). Assumption A2 is consistent with our hypotheses on the adjustment costs for

capacity, specifying an upper bound for the degree of their convexity. Assumption A3 is not very

strong and is easily verified.

In order to better understand the dynamical properties of system (24-25), let us start from the

existence of stationary states. We are in a position to offer the following

Proposition P1. If assumptions A1-3 are satisfied, the dynamical system (25-26) admits at
least one and at most three stationary equilibria.

Proof:

The proof can be undertaken in three steps:

(a) We leave to the reader to write down the equations for the loci &k = 0  and &y = 0. The weight ζ define by
equation (13) and utilised in the investment function, changes sharply its value when the following equality
is crossed:

k y
R

= + + ⋅ − + ⋅
+F

HG
I
KJ1 1ϕρ ϕρ θ ρ

δ
χ

b g b glog log (*)
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It can be shown that under our assumptions A1-3 the graph of (*) lies always below the graph associated to
the &k = 0  locus, so that ζ is always equal to zero along this locus (i.e., investment is always unconstrained in

this region). In fact the value of the &k = 0  locus is lower than that of (*) at y=0 and at y lf= γ , and the slope

of the former is greater than that of the latter. As a consequence the locus &k = 0  is a straight line.

(b) If θ is constant, it can be proved that the loci &k = 0  and &y = 0 intersect only once and thus there exists a
unique stationary equilibrium. In order to see this, compute the values of the two functions at y = 0,

verifying that the &k = 0  locus has a higher intercept than the &y = 0 one. Then let c be the aggregate

propensity to consume: c c c ck w k= + − <θb g 1. It follows that:

(slope of &y = 0 with θ constant)  =  1
1

1
1

1
1

1
+

−
< +

−
< + <

−
ϕρ

ξ
ε

ϕρ
ξ

ε
ϕρ

ϕρ
c

  =  (slope of &k = 0),

where we have used the negativity of ϕρ, and the facts c < 1 and (1-ξ-ε) > 0, that is (1-ξ) > ε. Notice that the
slope of the &y = 0 locus, besides being possibly negative, decreases after it intersects the graph of (*). Since
&k = 0  is a linear increasing function, while &y = 0 is piece-wise linear and convex, we conclude that (if θ is

constant) the two loci have a unique intersection (see figures 4a and 4b).

(c) Now relax the constancy of the wage share: this means that, as γy approaches lf, the wage share starts
increasing, as stated by (19). Thus the &y = 0 locus bends upwards. If γ is large enough, this locus becomes

quite steep around the point y lf= γ  while the slope rapidly decreases far from that point, where the wage

share is constant (either low or high). As a consequence, we can have three intersections between the two
loci &y = 0 and &k = 0 , and hence three stationary equilibria10. This completes the proof.

The exact location of these equilibria is a very complicated function of all parameters, and we shall

not insist on this point, focusing our interest in more qualitative properties. While the case of two

equilibria in not generic (i.e. it is almost never observed when parameters vary), whether there are

one or three equilibria depends crucially on the parameter γ appearing in expression (19) for the

wage share. If γ is large enough a change in output around y fl= γ  induces a strong shift in income

distribution, and hence in consumption expenditure: thus a quite different level of capital is necessary

to induce an investment expenditure which ensures market clearing. This non-linearity is the potential

source of multiplicity of equilibria. In addition, the amount of diversity between workers' and

capitalists' propensity to consume and the magnitude of the parameters ε and ξ is important for the

number of equilibria: if (as stated in note 10) the condition ε
ϕρ

ξ< −1 c  is satisfied far from y fl= γ ,

non-uniqueness is more probable, given a large γ. When three equilibria do exist, they are ordered in

ascending order of magnitude of both output and capital. Thus the economy can operate at different

stationary regimes: high or low levels of demand, output and capacity. This is clearly in line with the

role played by the effective demand in determining output and income distribution (quite a genuine

Keynesian phenomenon).

                                                       

10 Observe that the condition 
ε

ϕρ
ξ< −1 c  (which implies a negative slope of the &y = 0 locus) is sufficient but not necessary in

order to obtain three stationary states: simply, it renders the three-fold intersection more robust (see figures 4c and 4d). Notice in
addition that the above condition might obtain also for non-negligible values of ε, provided ξ is small. In other words, the slope of

the &y = 0 locus replicates the sigmoidal shape of the function θ yb g around the point y lf= γ . Clearly, a large γ  implies the

possibility that the &y = 0 locus intersects the &k = 0  locus (at most) three times, and this can happen more easily if 
ε

ϕρ
ξ< −1 c .
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[figure 4 about here]

In order to better characterise the previous results, something must now be said about the stability of

the stationary equilibria. As regards this point, one can prove the following:

Proposition P2. Given the fact that investment is not profit-constrained at stationary states,

then:
P2.1. If αε δ≈  and if only one stationary equilibrium exists, it can be locally stable or
unstable according to whether, respectively, fl y− γ *  is far from or close to zero (y* is the
equilibrium level of output); in the former case an equilibrium is more (less) stable when
fl y− γ * is positive (negative).
P2.2. If αε δ≈  and if there are three stationary equilibria, either all they are unstable (and

this is more probable if ε
ϕρ

ξ> −1 c ); or the middle one is unstable, while the remaining two

are locally stable (this is more probable if ε
ϕρ

ξ< −1 c ).

P2.3. If αε δ≠  in a substantial way, stationary equilibria are in general stable (unstable) if
αε δ<<  (αε δ>> ). However, if αε δ<<  and three equilibria exist, the middle one is unstable.

Proof.
Recall that we have proved that investment is unconstrained at stationary states (point a in the proof of

Proposition 1). This implies ζ
∂ζ
∂

∂ζ
∂

= = ≅
y k

0 at stationary states. As a consequence one can show that the

Jacobian computed at stationary states is the following matrix:

J =
− + + − +

F
HG

I
KJ −

L
NMM

O
QPP

R
S|
T|

U
V|
W|

+ +

− + − +

L

N

MMMMM

O

Q

PPPPP

≅
− + + − +

F
HG

I
KJ −

L
NMM

O
QPP

R
S|
T|

U
V|
W|

− −

L

N

MMMMM

O

Q

PPPPP

αε
ϕρ

α ξ θ
θ αε

ϕρ
δ

ϕρ
δ

ϕρ
δ

αε
ϕρ

α ξ θ
θ αε

ϕρ
δ

ϕρ
δ

ϕρ
δ

c c c
d

dy
y o o

o o

c c c
d

dy
y

k w k yy yk

ky kk

k w k

b g

b g

1

1

where the terms oij  depend on the value and derivatives of ζ at stationary states, and thus can be

disregarded. The sign-structure of the Jacobian matrix is 
± −
+ −
L
NM

O
QP , so that no clear-cut conclusion can be

drawn in general about the sign of its eigenvalues. However something can be said under the particular
assumptions of Proposition 2.
(i) If a unique steady state exists and the equilibrium output is located far from threshold lf γ , we know that

∂θ ∂y ≈ 0. It follows that the top-left element of J is lower than αε ϕρ , since the aggregate propensity to

consume is lower than one. If in addition αε δ≈ , then it is easy to check that tr Jb g < 0 and det Jb g > 0,

which implies negative real parts of the eigenvalues, and hence local stability. Notice however that the
equilibrium wage share (and hence the aggregate propensity to consume) is low when the equilibrium output
is below lf γ : in this case the trace of J is not only negative but lower than in the case y lf> γ , and
stability is stronger. On the other hand, if the equilibrium output level is located near the above threshold
and αε δ≈ , one has ∂θ ∂y >> 0 (provided that γ is not negligible), and hence tr detJ Jb g b g> <0 0 and .

Thus one eigenvalue is positive and the equilibrium is unstable. This proves part P2.1
(ii) Now, assume that three equilibria exist. We know that the middle one has output located near the
threshold lf γ , so that the same arguments as above apply: this equilibrium is unstable. As regards the two

10



equilibria in which output is displaced from lf γ , observe that the condition 
ε

ϕρ
ξ> −1 c  is precisely the

condition for positivity of the top-left element of J. If ε is large enough, then we have tr Jb g > 0 and

det Jb g < 0, that is instability. The opposite holds when 
ε

ϕρ
ξ< −1 c . Part P2.2 is thus proved.

(iii) Part P2.3, finally, is proved in a completely similar manner.

As regards the initial claim in Proposition P2, it is indeed reasonable. It would seem odd that in a

long-run steady equilibrium investment is permanently rationed. On the other hand, the particular

assumption in parts P2.1 and P2.2 (αε δ≈ ) can be interpreted as saying that output or capacity

shocks affect the two endogenous variables (directly, via the reaction of investment) in a similar way.

This means that the capital-output ratio tends to be preserved, and thus there is no reason for further

investment: from this point of view shocks tend to be "neutral", so that stability or instability must

depend on consumption effects.

Now, recall that we have introduced the parameter γ as a sort of total elasticity of employment to

output (see expression 19 above): thus the first part of Proposition 2 asserts that stationary states

tend to be unstable when located near or above a well-defined level of "high employment". The

reason is the following: under these circumstances any increase in output induces a substantial

increase (or even acceleration) in demand (mainly consumption), since the wage share is high (or

increasing): it follows that a further push to output is impressed by this excess demand. On the

contrary, there can exist an "under-employment trap" (i.e. a stable stationary state with low demand

and employment).

As regards the second part of Proposition P2, the conditions which strengthen stability of the

"external" equilibria are the same as those for having a decreasing shape of the locus &y = 0, however

with a zone in which it is sharply increasing (see figures 4a-b). This circumstance means that, as

output increases, consumption does not increase substantially, so that in order to clear the market an

increasing investment is required: but this can happen only if the capital-output ratio is decreasing.

Thus exogenous shocks to demand are not self-sustaining, and the equilibria are stable. On the

contrary, in the zone where the above-mentioned graph is increasing the wage share is rapidly rising

with output, so stimulating strong reactions of consumption expenditure. From the logical point of

view, this is equivalent to the interpretation of instability in the first part of the Proposition. One

could say that this case is somehow similar to Harrodian instability: the Keynesian multiplier is large

and highly pro-cyclical, so that the positive feedback between output and investment is strong.

The very last part of result P2.2 confirms the existence of two "traps" in which the economy might

be locked persistently: one with high employment, output, capacity, wage share and hence

consumption; and one with opposite properties. Only some exogenous shocks (in our model, the

term x) can produce jumps between them.

The final result (P2.3) states that, all other parameters given, stability (instability) is induced by a low

(high) value of ε, the elasticity of aggregate demand to investment: this means that the mechanism of

investment, too, is responsible for the dynamical properties of our system. Provided that the wage
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share is poorly sensitive to output, a low elasticity of aggregate demand to investment confirms the

traditional neo-classical result: the investment activity is self-stabilising. On the contrary, a large ε
drives the economy away from stationary states: when output is increasing (decreasing) towards its

steady value, investment is further stimulated (depressed), thus amplifying the motion. Notice also

that a prompt reaction of producers to excess demand (i.e. a large value of α) induces instability.

Finally, even if α is not large, and ε is low so that three equilibria can exist, the middle one is anyway

unstable (for the same reasons mentioned before).

4. Oscillations and limit cycles

The previous results inform us only about local stability or instability of steady states. However in

case of instability it might happen that our variables do not diverge to infinity, but approach some

closed orbit around the repelling stationary equilibrium: the non-linearities are responsible for this

possibility, which does not exist in linear systems. Indeed, as shown in the previous phase diagram

(figure 3) in the case of a single stationary equilibrium, the direction of "arrows" (velocities out of

equilibrium) confirms a rotating motion of variables in time.

In general, it is not possible to say whether this cycle is self-sustaining, or dumped, or explosive. But

under some circumstance we can be more precise about the existence of self-sustaining cycles. In

fact the following result holds true.

Proposition P3. If θ θ θ< <  and y lf≠ γ  at a stationary state, then for proper values of α
and δ an increase in ε causes the system to undergo a Hopf bifurcation. Thus there exists a
closed orbit around the stationary equilibrium. The period of this closed orbit is decreasing
in ε.

Proof.
We are assuming that the equilibrium level of output is displaced from the threshold fl γ , but not too much
so. This is because we want d dyθ  to be not very high, and at the same time we want the second-order

derivatives (at least) of our non-linearities to be non-vanishing11. Our strategy will be to show that J has
indeed complex eigenvalues under our assumptions, and that the real part of the eigenvalues (or equivalently
the trace) of J crosses zero from below when ε increases.

We must first check for the existence of complex eigenvalues of J, which happens if tr detJ Jb g b g2
4 0− < .

If one defines J =
L
NM

O
QP

j j

j j
11 12

21 22
, the latter condition is equivalent to j j j j11 22

2
12 214 0− + <b g . In our case

this means:

− + + − +
F
HG

I
KJ

F
HG

I
KJ −

L
N
MM

O
Q
PP − +

R
S|
T|

U
V|
W|

<
αε
ϕρ

α ξ θ
θ δ

ϕρ
δ

αεδ

ϕρ
c c c

d
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yk w kb g b g1

4
2

2
, or:

− + − + + − +
F
HG

I
KJ
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I
KJ −

L
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O
Q
PP

R
S
||

T
||

U
V
||

W
||

<
< >

>

αε δ φρ αφρ ξ θ
θ

αεδ
0 0

0

2

1 1 44 b g b g
1 24 34

1 24444444 34444444

c c c
d

dy
yk w k        (**)

                                                       
11  This is in fact a necessary condition for the existence of a Hopf bifurcation. Another condition is that for some
parameter values the eigenvalues of the Jacobian matrix be complex with zero real part, and that in addition the real
part be sensitive to changes in the parameters (see e.g. Guckenheimer-Holmes, 1983, chapter 3).
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That the third term in the braces of the LHS of last expression is positive derives precisely from our current
assumptions. In fact this can happen only if d dyθ > 0 , given that the aggregate propensity to consume is
lower than one; but the latter derivative must not be too large (it is "large" when y= fl γ ), otherwise it might

be difficult to annihilate the trace of J, which is also our goal. Now it is apparent that we can increase ε
enough for driving the LHS to zero from above; at the same time the RHS is raised by this operation, and
then our inequality is satisfied: the eigenvalues are complex.

Notice finally that, given the representation J =
L
NM

O
QP

j j

j j
11 12

21 22
, in our case we have j j11 220 0> < and  : it

follows that tr Jb g < −j j11 22 , where the latter term is the one appearing within braces on the LHS of

previous inequality. Thus when the LHS is zero the trace of J is negative; by further increasing ε, the
inequality keeps holding, while tr(J) rises. Provided that the values of the remaining parameters are properly
chosen, we can thus find a value of ε for which tr(J)=0 and the previous inequality is still satisfied. Notice
that this argument implies also that the real part of the eigenvalues of J are non-constant as ε varies.
Up to this point we have not considered the presence of the oij terms in the Jacobian matrix of our system.
This procedure is justified when one wants to evaluate approximately its eigenvalues. Indeed those terms
(which depend crucially on the derivatives of the weight ζ) are very small and do not generically reverse the
sign of the eigenvalues. However those quantities are not exactly null, nor are null their derivatives of any
order (recall the exponential function for ζ). One can conclude that the second and third-order derivatives of
equations 24 and 25 do not vanish.
All conditions are thus present to apply the Hopf Bifurcation Theorem (see note 11 above). We conclude that
our dynamical system can exhibit closed orbits. Now recall that the period of a Hopf orbit is given by
2π

τImb g , where τ is the complex eigenvalue of J. But it is also known that the imaginary part of this

eigenvalue increases when our inequality (**) is strengthened. Thus the period of the orbit is decreasing in ε.
This proves the proposition.

The preceding Proposition only ensures us about the existence of closed orbits: that is, we cannot

say whether they are limit cycles, i.e. attractors. In facts the bifurcation of Proposition P3 can be

supercritical (that is the closed orbit is an attractor) or it can be subcritical: in the latter case the

trajectories starting from the interior of the orbit converge to the stationary state, and those starting

outside the orbit diverge from the orbit itself.

That Hopf bifurcations in our dynamical system can be either supercritical or subcritical (depending

on parameters' values) comes from the fact that the second- and third-order derivatives of (24) and

(25) can be both positive and negative. The sign of these derivatives (which governs the type of

bifurcation) depends on parameters' values and on the location of the stationary state. However, the

exact calculation is a substantial undertaking in our case, since the so-called "normal form" of the

dynamical system is not easily recoverable. We simply observe that the relevant signs change

generically when parameters vary in some region of the parameter space. Thus stable limit cycles

can exist. For these reasons in the next section we resort to numerical analysis to corroborate our

claim about the possible existence of both super- and sub-critical bifurcations.

We must notice at this point that the existence of subcritical (i.e. unstable) Hopf closed orbits does

not necessarily imply that important shocks to the endogenous variables, pushing them outside those

orbits, lead to unbounded divergence of the system. In fact we put forward the following

Remark. If there exist two stable equilibria which are associated with subcritical Hopf
orbits, one can find parameter values such that these unstable orbits are surrounded by a
third closed orbit which is an attractor of the dynamical system

An analytical proof of this Remark failed us. However we offer the following argument in support of it.
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Consider Figure 5, where we have drawn the two loci &k = 0  and &y = 0, together with the line λ, which is the
graph of relation (*) appearing in the proof of Proposition 1, and the dashed area, which is the zone of the y
variable where the wage share changes. Under the hypotheses of the present Remark, the system has two
locally stable equilibria (E1 and E2 in figure 5), which are surrounded by unstable Hopf orbits (O1 and O2
respectively). This behaviour is described by the arrows drawn near those orbits in the figure. Our aim is to
show that we can find a closed curve surrounding O1 and O2 where the non-linear dynamics points inwards.
Coupled with the assumed instability of O1 and O2, this implies the existence and stability of an
intermediate closed orbit O3.
Now recall that system (24-25) includes two peculiar non-linearities (the functions defining ζ and θ): if the
parameters governing these non-linearities (υ and γ respectively) are large enough, the system is
approximately linear in most part of the y-k plane, that is outside the λ line and the dashed area. It follows
that, apart from the latter regions, the dynamics is equal to that of the linearisation of the system. Since the
points E1 and E2 are locally stable by assumption, each of them is the globally stable equilibrium of a linear
system (obviously, the linear systems at E1 and E2 are different). Thus one can find for E1 and E2 closed
curves on which the linear dynamics points inwards: as an example we have drawn these curves as c1 and c2
respectively. Outside the dashed area and along the solid parts of c1 and c2, the actual behaviour of our non-
linear system is identical to that of the corresponding linear part. In fact, it follows from the proof of
Proposition 1 that ζ is surely constant above the &k = 0  locus, and thus this non-linearity is not at work. As
regards the dashed region, simply choose c1 and c2 such that they can be connected by an horizontal
segment like c5: we know from the analysis of the flow (see figure 3) that above the &k = 0  locus arrows point
to "south-west", that is they point inwards with respect to c5.
As regards the part of the dynamical flow which lies below the &k = 0  locus, in this region the directional
arrows point to "north-east". Thus we can draw the horizontal segment c4 (passing through the intersection
of &k = 0  and c1), being sure that the arrows of the non-linear system point inwards on it. Finally, given
again that arrows point to "north-east", one can find a line like c3 (more or less steep, not vertical) which
connects c4 and c2 such that the non linear flow points inwards on it. Notice that, once crossed the &y = 0
locus from below, arrows by definition point to "north-west", and a fortiori point inwards with respect to c3.
Thus the union of (the solid parts of) c1, c5, c2, c3 and c4 forms the closed curve we where looking for.
This completes our argument.

[figure 5 about here]

The previous discussion uncovers the possible existence of two different types of limit cycles. The

first type (that we think of the demand type) takes place "near" a stationary state, and we may expect

that along the orbit income distribution is not strongly perturbed; if it is, this has little accelerating

effect on aggregate demand. When capacity has reached its highest (lowest) ratio to output,

investment start decreasing (increasing), and the cycle repeats itself; however, the economy does not

converge to the steady state, which is unstable due to locally significant multiplier effects (the

derivative of the wage share is non-vanishing). The interplay between output and capital seems to be

the most important mechanism at work here.

The second possible kind of limit cycle (of the distributional type) has a more sophisticated

interpretation. As long as fluctuations are mild, the above interaction between capacity and output is

self-stabilising (the stationary state is locally stable, and an unstable Hopf orbit exists around it); in

addition, the wage share is sticky (either at low or at high levels). If, on the contrary, a larger shock

is impressed on the system, employees suddenly raise (lower) their wage claims and consumption

changes accordingly, driving all variables far away from the previous values. It takes a longer time to

reverse this situation, and the reversal is not self-stabilising, since velocities are high at the turning

points: the economy remains trapped in this permanent oscillation.

Finally, the behaviour of the economy is even richer if the latter limit cycle surrounds two repelling

orbits, each of which in turn surrounds one locally stable stationary state. Now we have three
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"traps": a stable low-activity equilibrium; another equilibrium, again stable, with higher demand,

capacity and consumption; and finally a wide orbital attractor. While bargaining relations are quiet in

the former two, the latter is characterised by sudden changes in income distribution. Having in

addition a longer oscillation period, this orbit bears some resemblance to "political" cycles: during a

full cycle the bargaining power of workers and the distribution of income change, due to the

changing climate of industrial relations.

5. Model simulations12

We now move to a numerical investigation of the dynamic properties of the model. In order to check

whether this model has some resemblance to observed data, we will introduce parameters' values

which are reasonable for the Italian economy in recent decades. Starting with the output equation

(24), we set ε = 0.20  and ξ = 0.5 nearly in accordance with the observed average gross

investment/GNP and private consumption/GNP ratios in the period 1951-1994 (constant price). The

(log of) exogenous component of the aggregate demand (export, public expenditure and changes in

inventories) is equal to about 15 in the decade 1985-94 (1990 prices), and we start from that value.

It is not easy to find reliable estimates for the different propensities to consume, since neo-classical

theory of saving is usually related to total wealth and not to current income. However, we refer to

the propensity to save according to (personal) income distribution as a rough indicator of our (class)

propensity to consume. Jappelli-Pagano (1994) report a median propensity to save of 0.17 for the

lowest income quartile and 0.43 for the highest quartile.13 Basing on these values, we set ck = 0.50

and cw = 0.85.

As far as the technology is concerned, in a previous work (Checchi-Rampa-Rampa 1996) we made

use of a Cobb-Douglas technology, thus restricting our attention to the case of ρ = −1. This implies

constant income shares, which we do not want to maintain here. Using the same data-set we can

provide the empirical equivalent of equation (6) that allows us to identify the value of ρ. Using

Johansen trace test, for the Italian private sector in the period 1951-93 we find the following

(unique) cointegration relationship14

( ) . ( )l y w− − ⋅ +0 69 τ

Manera (1994) estimated for the manufacturing sector in the period 1954-1983 an elasticity of

substitution of −0.4515. While we must accept a measure of ρ lower than the unity (thus implying a

pro-cyclical behaviour of the wage share), we are left with the problem of choosing a specific figure.

This parameter often appears in combination with the ϕ parameter, and we have found in simulation
                                                       
12 Dynamic simulations are performed using the Runge-Kutta algorithm contained in the software DMC (Medio 1993).
13 Data are referred to the 1987 Bank of Italy survey on household incomes, and report the saving propensity for individuals aged
50-54. See table 6.7 in Jappelli-Pagano 1994. We are obviously aware that these figures are heavily influenced by transitory
components of personal income, but we could not find alternative evidence referred to Italy.
14 The p-value associated to the existence of at least one cointegrating relationship is 0.00, while the corresponding value for the
existence of at least two is 0.80. The test assumes absence of trend and the optimal lag structure in accordance with the Akaike
criterion (1 lag).
15 Rowthorn 1996 indicates that the median value for the capital/labour elasticity among several studies for OECD
countries is -0.59.
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that what is relevant is the product of the two. As regards the adjustment costs for the capacity, we

notice that in order to obtain convex costs of adjustment is sufficient to have ϕ>0; if the adjustment

costs are quadratic (as in most empirical work), this means a value of ϕ = 1. But this value might be

excessive, because it would dominate the investment dynamics. Again Manera (1994) claims that

"Total adjustment costs, expressed as a percentage of the investment asset price, are equal to 30.4%

..... Finally marginal adjustment costs amount to about 30% of the investment unitary cost"16. This

given, we assume as starting points of the simulations the following values: ρ = −0.50  and  ϕ
between 0.20 and 0.30. Notice also that from a theoretical point of view there should be a trade-off

between α and ϕ, since a lower adjustment cost for capacity should imply a quicker output response

to demand shocks.

The scale factor χ has been calibrated in order to obtain a reasonable value of the capital/output ratio

at the equilibrium; since this ratio ranges between 2 and 4 in the period 1951-94, this means a

maximum value for χ (maximum degree of capacity utilisation) of 0.50, and we chose this value. The

speed of adjustment α is obviously hard to measure. In the empirical estimation of an equation

similar to (20), assuming an error correction adjustment, we obtained a value of 0.37 for the

transitory component, and a value of 0.17 for the error correction component. Given the fact our

present adjustment is better interpreted as an error correction, we prefer the latter value. Since in

addition this figure incorporated the impact of all demand components, we assume α = 0.50 (which

is roughly the ratio between the estimated coefficient, 0.18, and the incidence of the autonomous

component on total effective demand, 1−ε−ξ=0.3).

As regards the wage share dynamics, we notice that η measures the probability of remaining

unemployed given the rate of unemployment, and therefore must it be close to unity. The β
coefficient measures the relative bargaining power of the trade unions vis a vis the counterparts, and

once again in the long run it must be not far from unity. For these reasons, we set η/β = 1 as a

plausible ratio. The γ parameter must be greater than 1 by definition; in the absence of further

information, we have used alternative values for the γ parameter, ranging from 2 to 5. The 1951-

1994 average value for the (log of) the labour force is lf = 10. Looking at equation (19), let us

remember that whenever we change lf (which is scale dependent), we must change γ accordingly.
Regarding the range of oscillation of the wage share, the choice is rather arbitrary: since in the last

forty years the gross wage share in the private sector of the economy oscillates between a minimum

of 0.36 in 1951 and a maximum of 0.49 in 1975, we set θ θ= =0 15 0 70. . and  in order to allow our

model economy to oscillate also far from a steady state, if the case.

Table 1 - Parameters set (in bold, the parameters that have been changed in each round)

Parameters Basic simulation Limit cycle one stable equilibrium
with external

attracting orbit

two stable equilibria
with external

attracting orbit

ε 0.20 0.20 0.20 0.17

                                                       
16 Manera 1994, p.160.

16



ξ 0.50 0.50 0.40 0.45
x 15 15 15 15

cw 0.85 0.85 0.85 0.85
ck 0.50 0.50 0.50 0.50
ρ - 0.50 -0.50 -0.50 -0.50
χ 0.50 0.50 0.50 0.50
α 0.50 0.50 0.50 0.50

η/β 1 1 1 0.50
γ 2 2 2 4
lf 10 10 22 40
θ 0.15 0.15 0.15 0.15

θ 0.70 0.70 0.70 0.70
R 0.08 0.08 0.08 0.08
δ 0.06 0.06 0.06 0.06
ϕ 0.30 0.20 0.205 0.20
ω 0.50 0.50 0.50 0.50
υ 5 5 5 5

The user cost of capital R and the depreciation rate δ have been set respectively equal to 0.08 and

0.06. We are finally left with the specification of the ζ function. The ω parameter controls the degree

of curvature of the ν function, and we have chosen an intermediate case by setting ω = 0.50. Finally,

if we want our expression (11) to approximate well equation (9), the υ parameter should be high

enough and we set υ = 5. We summarise the assumed parameters in Table 1. Considering these

figures, we should keep in mind that our Assumptions A1-3 are always satisfied.

By observing figures 6a and 6b we easily recognise that this simulated model exhibits cyclical

properties. This does not come as a surprise if we look at the Jacobian of the dynamical system.

Using the initial set of parameters (first column of table 1) we observe a stable focus, where an entire

cycle is clearly recognisable for the endogenous variables (figure 6a). When lowering the adjustment

cost for capital, we are increasing the investment elasticity to expected and/or actual profits. The

qualitative properties of the flow (directions and curvatures) are unaffected, but a stable limit cycle

now emerges clearly (second column of table 1 and figure 6b).

[figure 6 about here]

When we increase the labour force (the lf parameter) we are reducing the possibility of income share

fluctuations, since now the output is in a range where unemployment is sufficiently high to prevent

significant wage increases when productivity rises. This explains why the unique equilibrium exhibits

stability. However, it is quite easy to find a neighbourhood in the parameter space where an external

closed orbit is still able to attract the economic system whenever the fluctuations of the output

exceed a certain threshold (third column of table 1 and figure 7a). This is achieved by slightly

decreasing the consumption impact on the effective demand.

We have already seen that it is possible to obtain up to three equilibria, two of which are stable

(Proposition P.2.2). By further increasing the lf and γ parameter and decreasing the η/β parameter,

we observe two locally stable equilibria surrounded by an attracting closed orbit (fourth column of

table 1 and see figure 7b). What is the significance of these changes ? With these parameter changes
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we are strengthening the labour market reaction to output fluctuations, as if the trade union had

become eager to contend the available profits. This produces two stationary regimes, which are

robust whenever the system goes nearby. Otherwise the system keeps on fluctuating, even if the

movement is irregular because of acceleration in the turning points.

[figure 7 about here]

If we accept the idea that our model captures cyclical behaviours at a sufficient extent, the question

now becomes: what originates the cycle ? and which are its dynamical properties ? Besides what we

have already said in previous section, we will now refer to the cycle simulated in figure 6b, once the

model has already bifurcated to the a stable closed orbit. When observing figure 8, we notice that

investment systematically anticipates output of about one fourth of the cycle length17. When we

compare the simulated properties with those observed in empirical series, we observe that given the

absence of shocks the simulated series exhibit a greater variance and of course higher persistence.18

However our simulated model retains the property of greater variation of capital stock (with respect

to investment), and the leading behaviour of investment. Analogous properties are observed in actual

data for the capital stock, whereas in the case of the model this is transformed into a slightly lagging

behaviour (instead of a slightly leading one).19

[figure 8 about here]

One can also use simulations to verify whether our model is able to produce the two different types

of cycles (demand and distributional cycle, respectively). We can neglect the income distribution

effect on consumption by simply assuming an identical propensity to consume for both groups of

agents. Alternatively, we can produce a constant wage share on income by assuming that the

alternative wage for the trade union is independent of the unemployment rate20. In this case we

expect the model to produce essentially a demand cycle due to the interplay of demand and capacity.

Indeed the system keeps on exhibiting an attractive limit cycle, and no sensible effect is detected on

the cycle length from these changes. An increase in output raises the marginal productivity of capital

and/or actual profitability, while an increase in capital stock lowers capital productivity. As soon as

quantity adjustments are not instantaneous, there is room for expansionary cycles: output growth

raises investment, which in its turn contributes to a further increase in demand. When the

accumulated capacity is high enough to depress the investment, the cycle reverts downward and a

cumulative process of disinvestment and reduced production starts again.

When we perform the alternative experiment of excluding the demand dynamics (for example setting

the investment impact on demand equal to zero, namely ε = 0), we already know that the model is

                                                       
17 In Checchi-Rampa-Rampa 1996 we measured an average cycle length of 9.15 years for the period 1951-92. That measure was
obtained from the eigenvalues of the linearised system estimated on Italian data.
18 The AR(1) coefficient for output and capital are 0.41 and 0.94 (1956-1992 - yearly data referred to the private
sector). The same coefficients in our simulations are 0.94 and 0.93.
19 The correlation coefficients of k y y yt t t t with − +1 1, ,  are 0.72, 0.60 and 0.35 respectively in actual data, whereas our
simulations yield the values of 0.60, 0.85 and 0.98.
20 In terms of parameter values, we consider the case of η =  0.

18



characterised by stable equilibria, and therefore limit cycles do not occur (see Proposition 2.2 and

2.3). Alternatively, one could make investment entirely dependent upon profits and not upon the

neoclassical Tobin-q: in order to achieve this kind of formulation, we have forced our weight ζ to be

always equal to one. Under this assumption, our model collapses to a sort of purely classical theory.

The results of these simulations show that cycles tend to disappear in our model: equilibria become

either stable, or unstable (the latter case emerges when one forces investment to become a large part

of demand).

Therefore, the second type of limit cycle we observe (the one surrounding the stable foci - see figure

7b), that is characterised by significant changes in income distribution, is supported in an essential

way by endogenous demand formation. In other words, our model is unable to replicate a purely

classical type of cycle (as in the original Goodwin's model where capital/output ratio is constant), but

it requires some sort of feedback from capital formation onto demand in order to produce

oscillations. The outcome in this case is a cycle characterised by longer period (about 25 years),

which can be accounted fro invoking sociological and political factors.21

5. Conclusions

In this paper we have analysed a model in which firms' accumulation activity, besides being subject to

adjustment costs, is possibly profit-constrained. The latter aspect depends on a bargaining for wages

with trade unions, where the bargaining power is affected by the level of activity and the

unemployment rate. Profits depend also on the degree of substitutability between capital and labour.

In addition, consumption demand is affected by income distribution, since employers and employees

are characterised by different propensities to consume. Thus the interplay between effective demand,

output, employment and wage bargaining might be expected to give rise to endogenous self-

sustaining fluctuations.

This expectation is indeed confirmed by the analysis of a non-linear differential system which results

from the previous hypotheses. It turns out that a wide range of dynamics is possible. First of all,

more than one steady state can exist: under some circumstances, three equilibria do exist, one of

which is unstable and two are stable. The latter are ordered in terms of output and employment (so,

one would maintain, they could be Pareto-ranked). However, since both are stable, the economy can

be trapped in the low-activity regime. Second convergence to the steady states takes always place in

a non-monotonic, oscillating, fashion. One can also find unstable equilibria, especially whenever

investment responds quickly to output (low adjustment costs). Given the assumed non-linearities,

this implies the existence of stable closed (Hopf) orbits around equilibria. Third, even when steady

states are locally stable, the parameters governing the bargaining process between firms and unions

are so crucial that wage claims change sharply once passed a certain threshold of the unemployment

rate. This change modifies significantly the average propensity to consume (and hence the

                                                       
21 This is the interpretation of the Goodwinian cycle proposed by Flaschel-Groth 1995.
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composition of effective demand) during the cycle: it follows that the process of convergence to the

steady state is interrupted and the economy sets in a wider orbital oscillation, which is a further

attractor of the dynamical system. While the former type of cycle (Hopf) exhibits a shorter period,

and is mainly due to the interplay between output and capacity; the latter orbit takes a longer time to

be completed, and can be viewed as a sort of political-economic cycle, during which the wage-share

changes greatly.

These results are confirmed by means of simulations which utilise parameter values close to some

estimates related to the post-war Italian economy. In particular, it is shown that the basic simulation

preserves some focal properties of observed macroeconomic series, while only slight perturbations of

the parameters are needed in order to obtain closed orbits (both short-period and long-period ones).

We suggest that the interpretation of real macroeconomic fluctuations can be better afforded by

means of a model which includes both the capital-output interplay and the income distribution-

demand mechanism.
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Figure 1 - A finance-constrained investment function
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Fig.4 - Different configurations of phase diagram
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Fig.6a - Basic simulation (ϕ = 0.30)

Fig.6b - A limit cycle (ϕ = 0.20)
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Fig.7a - A unique stable equilibrium surrounded by a repelling and an attracting orbit

Fig.7b - Two stable equilibria surrounded by an attracting orbit
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For the referee

In the sequel we provide a more detailed sketch of the proofs of the three proposition in the text.

Proof of Proposition P1

First of all, we must write down expressions for the equilibrium loci of equations 24 and 25:
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In addition to this, it can be checked that the weight ζ defined by expression (12) of the text, and utilised in the
investment function, changes sharply its value when the following equality is crossed:

(iii) k y
R

= + + ⋅ − + ⋅
+F

HG
I
KJ1 1ϕρ ϕρ θ ρ

δ
χ

b g b glog log ;

when a ">" sign is present in (iii), ζ is roughly equal to zero (that is, investment is unconstrained by profits); when a
"<" sign holds, ζ is almost equal to one. The higher is the parameter υ, the more rapid is this transition. Recall that
ζ ζ= y k,b g  and θ θ= yb g .
The proof requires some steps: in Step 1 it is shown that the graph of (iii) lies always below the graph of (ii) under our
assumptions A1-3, so that ζ is always equal to zero along (ii) and thus the latter is a linear increasing function; in Step
2 we prove that, for θ constant (i.e. either η/β = 0 or γ = 0 or both) the loci (i) and (ii) intersect only once and thus
there exists a unique stationary equilibrium; finally, in Step 3 we prove that allowing for a large parameter γ causes
the graph of (i) to exhibit a strong non-linearity, and thus to have possibly a three-fold intersection with (ii).

Step 1. Start at y = 0: this means that θ θ0b g = , provided that lf (the log of labour-force) is positive, which we assume.

Observe that, given Assumption A3, the vertical intercept of (iii) is positive. Now, suppose for a moment that ζ(0,k) is
zero in expression (ii): if we can show that the vertical intercept of (ii) is larger than the one of (iii), then it follows
that a ">" sign holds in (iii) at least around y = 0, and we are justified in assuming ζ = 0. Indeed, call Γ Γ2 3 and  the

intercepts respectively of (ii) and (iii). Taking y = 0, ζ = 0 and θ θ= , one has:
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where we have used the fact that ϕ ρ ϕρ> < − >0 0 1 0,  and hence . Consider the argument of the last sign function:
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We have used the following facts: ρ δ χ< + <1;   R  (from A3); ϕρ ϕρ< <0 1;    (from A1 and A2); θ < 1; and finally

A3 again. Thus it is confirmed that ζ is indeed zero at the vertical intercept of (ii).

Now, it is easy to see that the slope of (iii) is lower than the slope of (ii), if θ stays constant and ζ = 0. In fact:

slope of ( ) =  = slope of ( )ii iii
1

1
1

1
1

−
= +

−
> +

ϕρ
ϕρ

ϕρ
ϕρ ,    since ϕρ < 0.

It follows that the vertical distance between the two loci increases. At a certain point (when γy approaches lf) θ starts
rising and the graph of (iii) bends upwards: however, there is non crossing of the two curves. In fact if one writes
down the general expression for their distance one finds that, in addition to the effect of y that is positive, this
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expression is identical to the expression we studied for the intercepts' distance, with θ θ replacing ; but assumption A3

implies that this distance is again positive. Thus ζ never becomes positive along the graph of (ii): this graph is a
straight line with positive slope equal to 1/(1-ϕρ).

Step 2. Assume θ constant. Suppose ζ = 0 at the intercept of (i); it is easily checked that this intercept is greater than
that of (ii), and hence also the graph of (i) lies initially above (iii): ζ must actually be zero for y = 0. Now, let c be the
aggregate propensity to consume: c c c ck w k= + − <θb g 1. The slope of (i) is clearly lower than the slope of (ii), in fact:
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where we have used the negativity of ϕρ, and the facts c < 1 and (1-ξ-ε) > 0, that is (1-ξ) > ε. Not only this, but when
y increases investment might become profit-constrained (we cannot exclude this case now), and the effect of ζ > 0 is to

further reduce the slope of (i). In fact this slope is 1
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 is increasing in ζ and hence that slope is decreasing in ζ (due to the negativity of φρ).

Observe that the slope of (i) could be negative: this happens if 
ε

ϕρ
ξ< −1 c .

From this all it follows that (ii) is a linear monotonic function, while (i) is piece-wise linear and convex: we conclude
that if θ is constant the loci (i) and (ii) have a unique intersection: see Figures A1a and A1b.

Step 3. See the text.

Proof of Proposition P2

Since we are now interested in local stability, let us write the derivatives of the non-linear terms of system (24-25).

Wage share. It follows from expression (19) of the text that: 
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Observe that this derivative is zero on the frontier of the interval θ θ,  and reaches the unique maximum at the middle

point of it. From (19) it follows that as γ increases the above derivative stays near zero in most part of the interval.

Log of profit share. From (D1) it follows:
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This derivative reaches of course a minimum at the middle point of the interval θ θ, .
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The ζ function. We have defined ζ
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If υ is large  f remains most of the time near -1 or 1 (according to the sign of its argument), and thus the derivative of 
ζ is most of the time equal to zero.

The investment function. Given expression (13) of the text for investment, and our approximation (19) for the wage
share, it follows that:
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Collecting all the above material and taking account of the dynamical equations (24-25) of the text, it turns out that we
can write the following expression for the Jacobian matrix of the system evaluated at any point (y,k):
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Finally, recall that investment is unconstrained at stationary states. Given the previous arguments, this implies

ζ
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∂
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0 . Thus the specialisation of D6 to stationary states gives the Jacobian matrix reported in the text.
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